Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Rev Mol Diagn ; 16(4): 501-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26716517

RESUMO

OBJECTIVE: Almost all patients with Fragile X Syndrome (FXS) exhibit a CGG repeat expansion (full mutation) in the Fragile Mental Retardation 1 gene (FMR1). Here, the authors report five unrelated males with FXS harboring a somatic full mutation/deletion mosaicism. METHODS: Mutational profiles were only elucidated by using a combination of molecular approaches (CGG-based PCR, Sanger sequencing, MS-MLPA, Southern blot and mPCR). RESULTS: Four patients exhibited small deletions encompassing the CGG repeats tract and flanking regions, whereas the remaining had a larger deletion comprising at least exon 1 and part of intron 1 of FMR1 gene. The presence of a 2-3 base pairs microhomology in proximal and distal non-recurrent breakpoints without scars supports the involvement of microhomology mediated induced repair (MMBIR) mechanism in three small deletions. CONCLUSION: The authors data highlights the importance of using different research methods to elucidate atypical FXS mutational profiles, which are clinically undistinguishable and may have been underestimated.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Mosaicismo , Adolescente , Adulto , Criança , Éxons , Síndrome do Cromossomo X Frágil/patologia , Humanos , Íntrons , Masculino , Mutação , Deleção de Sequência , Expansão das Repetições de Trinucleotídeos
2.
J Med Genet ; 51(5): 309-18, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24591415

RESUMO

BACKGROUND: Greater than 200 CGG repeats in the 5'UTR of the FMR1 gene lead to epigenetic silencing and lack of the FMR1 protein, causing fragile X Syndrome. Individual carriers of a premutation (PM) allele with 55-200 CGG repeats are typically unmethylated and can present with clinical features defined as FMR1-associated conditions. METHODS: Blood samples from 17 male PM carriers were assessed clinically and molecularly by Southern blot, western blot, PCR and QRT-PCR. Blood and brain tissue from an additional 18 PM males were also similarly examined. Continuous outcomes were modelled using linear regression and binary outcomes were modelled using logistic regression. RESULTS: Methylated alleles were detected in different fractions of blood cells in all PM cases (n=17). CGG repeat numbers correlated with percent of methylation and mRNA levels and, especially in the upper PM range, with greater number of clinical involvements. Inter-tissue/intra-tissue somatic instability and differences in percent methylation were observed between blood and fibroblasts (n=4) and also observed between blood and different brain regions in three of the 18 PM cases examined. CGG repeat lengths in lymphocytes remained unchanged over a period of time ranging from 2 to 6 years, three cases for whom multiple samples were available. CONCLUSIONS: In addition to CGG size instability, individuals with a PM expanded allele can exhibit methylation and display more clinical features likely due to RNA toxicity and/or FMR1 silencing. The observed association between CGG repeat length and percent of methylation with the severity of the clinical phenotypes underscores the potential value of methylation in affected PM to further understand penetrance, inform diagnosis and expand treatment options.


Assuntos
Alelos , Metilação de DNA , Proteína do X Frágil da Deficiência Intelectual/genética , Mosaicismo , Adolescente , Idoso , Criança , Pré-Escolar , Fibroblastos , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/etiologia , Síndrome do Cromossomo X Frágil/genética , Heterozigoto , Humanos , Masculino , Mutação , Expansão das Repetições de Trinucleotídeos , Adulto Jovem
3.
J Hum Genet ; 58(8): 553-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23739124

RESUMO

The CGG repeat within the premutation range in the fragile X mental retardation 1 (FMR1) gene can lead to neurodegenerative disorders and intellectual disabilities. An increase in size upon the transmission from parent to child is more likely to occur for larger alleles and without AGG interruptions. We describe the molecular structure and the transmission of an FMR1 premutation allele in a multigenerational family, identified through newborn screening for fragile X syndrome. Transmission of the premutation allele was traced through five generations in 14 of the 23 individuals who were genotyped through cascade testing. Allele size instability during transmission was observed, but no expansions to a full mutation were detected. Clinical and molecular characterizations of the participants lead to the diagnosis of fragile X-associated tremor ataxia syndrome in one subject identified as a premutation carrier. A gradual small increase in the size of the premutation allele was observed during transmission through five generations. The relative stability is likely due to the presence of two AGGs within the allele. The detection of AGG interruptions within the premutation alleles is important in genetic counseling, to better predict the risk of expansion during transmission from a premutation to a full-mutation allele.


Assuntos
Alelos , Proteína do X Frágil da Deficiência Intelectual/genética , Mutação/genética , Triagem Neonatal , Expansão das Repetições de Trinucleotídeos/genética , Eletroforese Capilar , Família , Feminino , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Regulação da Expressão Gênica , Haplótipos/genética , Humanos , Recém-Nascido , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...